Pengertian Model Matematika

Program linear merupakan salah satu bidang matematika terapan yang banyak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalnya, program linear digunakan untuk
membantu pemimpin perusahaan dalam mengambil keputusan manajerial. Permasalahan yang berhubungan dengan program linear selalu berhubungan dengan proses mengoptimalkan fungsi
objektif (fungsi tujuan) berdasarkan kondisi-kondisi yang membatasi. Dalam hal ini, optimalisasi dapat berupa memaksimumkan atau meminimumkan fungsi tujuan. Salah satu contoh penggunaan program linear adalah untuk menyelesaikan permasalahan berikut. Misalnya, membuat medali
bagi juara I, II, dan III pada pertandingan bulu tangkis, diperlukan campuran emas dan perak masing-masing dengan perbandingan 2 : 1, 1 : 1, dan 1 : 2. Jika setiap juara me-merlukan paling sedikit 20 medali untuk juara I, 15 medali untuk juara II, dan 10 medali untuk juara III, tentukan model matematika dari masalah program linear tersebut.

Model Matematika

Permasalahan yang Anda hadapi dalam kehidupan sehari-hari adalah masalah nyata, bukan masalah yang langsung berbentuk angka ataupun hitungan-hitungan matematika. Masalah nyata yang akan Anda selesaikan ataupun dicari solusinya, dapat Anda temukan dalam berbagai bidang. Misalnya, dalam menjalani proses produksi pada suatu perusahaan, pastilah tersedia bahan baku, tenaga kerja, mesin, dan sarana produksi lainnya. Seorang pengusaha harus memperhitungkan semua faktor yang ada supaya perusahaannya dapat meminimumkan biaya produksi dan memaksimumkan keuntungan yang diperoleh. Program linear dapat digunakan untuk menyelesaikan masalah-masalah tersebut. Akan tetapi, masalah-masalah tersebut terlebih dahulu
harus diterjemahkan ke dalam bahasa matematika sampai ke tingkat yang paling sederhana. Proses menterjemahkan masalah nyata ke dalam bahasa matematika dinamakan pemodelan matematika. Bagan proses pemodelan matematika dapat digambarkan sebagai berikut. Supaya memahami proses pemodelan matematika tersebut, pelajarilah uraian berikut.
Misalkan seorang agen sepeda ingin membeli paling banyak 25 buah sepeda untuk persediaan. Ia ingin membeli sepeda model biasa dengan harga Rp1.200.000,00/buah dan sepeda model sport dengan harga Rp1.600.000,00/buah. Ia mempunyai modal Rp33.600.000,00. Ia berharap memperoleh untung Rp200.000,00 untuk setiap sepeda biasa dan Rp240.000,00 untuk setiap sepeda sport. Jika Anda diminta untuk memodelkan masalah ini, dengan harapan agen sepeda tersebut mendapatkan keuntungan maksimum, dapatkah Anda membantunya? Untuk memodelkan permasalahan tersebut, langkah pertama dimulai dengan melakukan pemisalan. Pada permasalahan tersebut, ada 2 model sepeda yang ingin dibeli oleh agen, yaitu sepeda biasa dan sepeda sport.
Misalkan banyaknya sepeda biasa yang dibeli adalah x buah dan banyaknya sepeda sport yang dibeli adalah y buah. Oleh karena keuntungan yang diharapkan dari sepeda biasa dan sport berturut-turut adalah Rp200.000,00 dan Rp240.000,00 maka keuntungan yang mungkin diperoleh agen tersebut ditentukan oleh z = f(x, y) = 200.000x + 240.000y
Fungsi z = f(x, y) tersebut dinamakan sebagai fungsi objektif (fungsi tujuan). Dari permasalahan yang ada, diinginkan untuk memaksimumkan keuntungan yang didasarkan pada kondisi-kondisi yang ada (kendala). Setiap kendala yang ada, bentuknya berupa pertidaksamaan. Fungsi kendala dari permasalahan agen sepeda tersebut ditentukan sebagai berikut:
• Banyaknya sepeda yang akan dibeli oleh agen tersebut x + y ≤ 25
• Besarnya modal yang dimiliki agen sepeda 1.200.000x + 1.600.000y ≤ 33.600.000
15x + 20y ≤ 42
• Banyaknya sepeda yang dibeli tentu tidak mungkin negatif sehingga nilai x ≥ 0 dan y ≥ 0.
Dengan demikian, terbentuklah model matematika berikut.
z = f(x, y) = 200.00x + 240.000y
Tujuannya memaksimumkan fungsi tujuan yang didasarkan pada kondisi
x + y ≤ 25
15x + 20y ≤ 42
x ≥ 0
y ≥ 0

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *