Pengertian Pertidaksamaan Linear Dua Variabel

Persamaan linear merupakan sebuah persamaan aljabar dimana tiap sukunya mengandung konstanta atau perkalian konstanta dengan tanda sama dengan serta variabelnya berpangkat satu. Persamaan ini dikatakan linear karena jika kita gambarkan dalam koordinat cartesius berbentuk garis lurus. Sistem persamaan linear disebut sistem persamaan linear satu variabel karena dalam sistem tersebut mempunyai satu variabel. Bentuk umum untuk persamaan linear satu variabel yaitu y=mx+b yang dalam hal ini konstanta m menggambarkan gradien garis serta konstanta b adalah titik potong garis dengan sumbu-y.
Pada subbab ini akan dipelajari pertidaksamaan linear dua variabel. dan suatu keuntungan apabila Anda pernah memahami konsep pertidaksamaan linear dan persamaan linear dua variabel.

Pertidaksamaan Linear Dua Variabel

Bentuk pertidaksamaan linear dua variabel sama dengan bentuk pertidaksamaan linear satu variabel, pertidaksamaan linear dua variabel memiliki dua variabel (peubah). Adapun pertidaksamaan linear satu
variabel hanya memiliki satu peubah. Begitu pula dengan persamaan linear dua variabel sama dengan pertidaksamaan linear dua variabel, hanya saja berbeda dalam tanda ketidaksamaannya. Pada persamaan linear dua variabel,digunakan tanda hubung “ = ” sedangkan pertidaksamaan linear dua variabel digunakan tanda hubung “ >, <, ≥, atau ≤ “. Bentuk umum pertidaksamaan linear dua variabel sama dengan bentuk umum persamaan linear dua variabel. Seperti yang sudah disinggung sebelumnya, perbedaannya terletak pada tanda ketidaksamaan. Pada persamaan digunakan tanda “ = ”, sedangkan pada pertidaksamaan digunakan tanda “ >, <, ≥, atau ≤ “.
 Berikut bentuk umum dari pertidaksamaan linear dua variabel:
 ax + by > c
ax + by < c
ax + by ≥ c
ax + by ≤ c
Dengan : a = koefisien dari x, a ≠ 0
b = koefisien dari y, b ≠ 0
c = konstanta a, b, dan c anggota bilangan real.

Definisi Pertidaksamaan Linear Dua Variabel Pertidaksamaan linear dua variabel adalah kalimat terbuka matematika yang memuat dua variabel, dengan masing-masing variabel berderajat satu dan dihubungkan dengan tanda ketidaksamaan. Tanda ketidaksamaan yang dimaksud adalah >, <, ≥, atau ≤. Anda telah mengenal dan mengetahui definisi serta bentuk umum dari suatu pertidaksamaan linear dua variabel. Sekarang, Anda tentu dapat membedakan yang manakah di antara pertidaksamaan-pertidaksamaan berikut yang merupakan pertidaksamaan linear dua variabel.
1. 2x < 15
2. 2x + 3y ≥ 6
3. xy + x > 3
4. x2 + 2y ≤ 5 
5. –x ≥ y + 1
Manakah di antara pertidaksamaan-pertidaksamaan tersebut yangmerupakan pertidaksamaan linear dua variabel? Dari ke lima nomor pertidaksamaan tersebut, yang merupakan pertidaksamaan linear dua
v ariabel adalah pertidaksamaan nomor 2 dan 5. Pertidaksamaan nomor 1, merupakan pertidaksamaan linear satu variabel. Pertidaksamaan nomor 3 bukanlah pertidaksamaan linear dua variabel karena pada
pertidaksamaan tersebut memuat perkalian variabel. Pertidaksamaan nomor 4 juga bukan pertidaksamaan linear dua variabel karena ada variabel yang derajatnya lebih dari satu.
Penyelesaian dari suatu pertidaksamaan linear dua variabel berupa pasangan terurut (a, b) yang memenuhi pertidaksamaan linear dua variabel. Semua penyelesaian dari pertidaksamaan linear dua variabel disatukan
dalam suatu himpunan penyelesaian. Himpunan penyelesaian dari suatu pertidaksamaan linear dua variabel biasanya disajikan dalam bentuk grafik pada bidang koordinat cartesius.

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *